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OutlineOutline

Models as tools for making inferences from system data
prediction, simulation, control, filtering, fault detection

Model structures
physical law based, input-output description, linear, nonlinear

Model estimation
statistical/parametric, set membership, structured

Model quality evaluation (vs. model validation)

Application examples
Prediction of atmospheric pollution
Simulation of dam crest dynamics
Identification of vehicles with controlled suspensions



Regression form of system representationRegression form of system representation

System So produces output signal y                               
when driven by input signal u :
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Output y is related to input u                                    
by the regression function f o :
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Regression form of system representationRegression form of system representation

Linear system

If ny=0 : MA (FIR) system

f o is linear in :
tw
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If nu=0 : AR system

ARMA system

If f o nonlinear : NARMA, NFIR, NAR systems



Making inferences from dataMaking inferences from data
It is desired to make an inference on system So :

prediction, identification, simulation, 
control, filtering, fault detection

The inference is described by the operator I( f o,wT)

one-step prediction

identification

I(f o,wT)=f o(wT)

I(f o,wT)=f o

The system So is unknown, but a finite number of 
noise corrupted measurements of yt,wt are available:

1 ( ) , 1, ,t o t ty f w d t T+ = + =� � "
dt accounts for errors in data ,t ty w� �



Making inferences from dataMaking inferences from data

Problems :
for given estimates

evaluate the inference error

The inference error cannot be exactly evaluated
since f o and wT are not known

ˆ ˆ,o T Tf f w w� �
ˆ ˆ( , ) ( , )o T TI f w I f w−

find estimates ˆ ˆ,o T Tf f w w� �
“minimizing” the inference error

Need of prior assumptions on f o and d t for 
deriving finite bounds on inference error
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The model is described by:

type of function f
type of noise d

Model structuresModel structures

which inputs u1, u2,…
lag values ny, nu1, nu2,…
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Model structure is defined by:



Typical assumptions in literature:
on system:

known lag values ny, nu1, nu2,…

Functional form of F(θ) required:
derived from physical laws
σi : “basis” function (polynomial, sigmoid,..)
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on noise:    iid stochastic noise

Parameters θ are estimated by optimizing
Least Squares (LS) or Maximum Likelihood functionals

Statistical/parametric approachStatistical/parametric approach
Model structuresModel structures



If possible, physical laws are used to obtain the
parametric representation of ( ),f w θ

When the physical laws are not well known or too 
complex, input-output parameterizations are used

“Fixed” basis 
parametrization
Polinomial, trigonometric, etc.

“Tunable” basis 
parametrization
Neural networks, wawelets , etc.

often called black-box models

Statistical/parametric approachStatistical/parametric approach
Model structuresModel structures
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“Basis”

Problem: Can σi ’s be found such that

( )( , ) o
rf w f wθ →∞→ ?

Statistical/parametric approachStatistical/parametric approach
Model structures: Model structures: “fixed” basis“fixed” basis



For continuous f o, bounded              and σi

polynomial of degree i (Weierstrass):

nW ⊂ℜ
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− =

Polynomial NARX models

Statistical/parametric approach Statistical/parametric approach 
Model structures: Model structures: “fixed” basis“fixed” basis
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One of the most common “tunable” parameterization
is the one-hidden layer sigmoidal neural network  
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Statistical/parametric approach Statistical/parametric approach 
Model structures: Model structures: “tunable” basis“tunable” basis

sigmoid 
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Given T noise-corrupted measurements of y t,w t:

Measured output

Known function
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Statistical/parametric approach Statistical/parametric approach 
Model estimationModel estimation



( )oY F Dθ= +�
Gaussian pdf

Maximum Likelihood –
Least Squares estimate

( )ˆ arg min R
θ

θ θ=

Problem: is in general non-convex
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Statistical/parametric approach Statistical/parametric approach 
Model estimationModel estimation



“Fixed” basis:“Fixed” basis:

Estimation of θ is a linear problem: oY L Dθ= +�
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Statistical/parametric approach Statistical/parametric approach 
Model estimationModel estimation

Statistical/parametric approach Statistical/parametric approach 
Model estimationModel estimation



For fixed basis and D iid gaussian:

For tunable basis this results holds 
asymptotically (T→∞) with:

( ) 1ˆ 2 . . 0.95o ML
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Statistical/parametric approach Statistical/parametric approach 
Estimation accuracyEstimation accuracy

standard deviation of  
noise component d i
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Model structure choice:
- “basis” type
- Number r of “basis”
- Number n of regressors

Problem: “curse of dimensionality”
The number r of basis needed to obtain 
“accurate” approximation of f o may grow exponentially
with the dimension n of regressor space

More relevant in the case of “fixed” basis

Statistical/parametric approach Statistical/parametric approach 
Model structures: Model structures: propertiesproperties



Under suitable regularity conditions on the function to 
approximate, the number of parameters r required 
to obtain “accurate” models grows linearly with n

Estimation of θ requires to solve a non-convex
minimization problem

Trapping in local minima

Statistical/parametric approach Statistical/parametric approach 
Model structures: Model structures: propertiesproperties

Using tunable basis:



Basic to the statistical/parametric approach is the 
assumption of no modeling error

Statistical/parametric approach Statistical/parametric approach 
Modeling errorsModeling errors

: ( , )o o of f wϑ ϑ∃ =

stochastic vari
inde

able 
pendent of input u

( , )t t od y f w ϑ= −�



Statistical/parametric approach Statistical/parametric approach 
Modeling errorsModeling errors

Searches for the functional form of unknown f o are   
time consuming and lead to approximate model structures

d t is no more a stochastic variable independent of u

Statistical estimation in presence of                 
modeling errors is a hard problem 

Set Membership approach:
no assumption on the functional form of f o

no statistical assumption on d t



Set Membership approachSet Membership approach

Significant improvements obtained by:

use of “local” bound

bounded set ∈ Rn
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scaling of regressors w to adapt to data
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SM assumptions:

on system:   

on noise:
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Inference algorithm Φ maps all information
into estimated inference:
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∈ − ≤ = 

 
+� � "= F

All information (prior and data) are summarized
in the Feasible Systems Set:

ˆ ( ) ( , )T o TI FSS I f w=Φ �

FSST is the set of all systems ∈F (γ) that could 
have generated the data

~

Set Membership approachSet Membership approach



Set Membership approachSet Membership approach
Prior assumptions validationPrior assumptions validation

The fact that the priors are validated by using the 
present data does not exclude that they may be
invalidated by future data 
(Popper, “Conjectures and Refutations: the Growth of Scientific 
Knowledge”, 1969)

Prior assumptions are invalidated by data
if FSST is empty

Prior assumptions are considered validated
if FSST ≠ Ø



Set Membership approach Set Membership approach 
Prior assumptions validationPrior assumptions validation

Theorem:
Conditions for assumptions to be validated are:

necessary:

sufficient:
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Set Membership approach Set Membership approach 
Prior assumptions validationPrior assumptions validation

Used for the
choice  of γ,ε
values

In space (γ,ε) the surface * ( ) inf
TFSS

γ ε γ
≠∅

=
separates falsified values from validated ones

validated

falsified



Set Membership approach Set Membership approach 
Error and optimality conceptsError and optimality concepts

(Local) Inference error:

An algorithm Φ* is optimal if:
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r: (local) radius of information



InferenceInference

Let || I(f,wT)||=|| f ||p=

Theorem:

1( ) [ ( ) ( )]
2

cf w f w f w= +

i) The identification algorithm Φc(FSST)=f c

is optimal for any Lp norm, 1≤ p ≤∞
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ii) The radius of information r is:

Identification: Identification: I(I(f,f,wwTT)=)=ff

Set Membership approachSet Membership approach



InferenceInference

Let: || I(f,wT)||=| f (wT) |

Assume:

Prediction: Prediction: I(I(f,f,wwTT)=)=f f ((wwTT))

Let: { }2
( ) :t t tB w w W w wδ δ= ∈ − ≤� �

t t td ε γδ≤ +

Set Membership approachSet Membership approach



InferenceInference

Theorem:
i) The prediction algorithm 

ii) If

Prediction: Prediction: I(I(f,f,wwTT)=)=ff((wwTT))

( ) ( )c T c TFSS f wΦ = �

( ) ,T T TB w C Cδ ⊂� ∩ then prediction 1ˆ ( )T c Ty f w+ = �
is optimal and the radius of information is:

is 2-optimal, with prediction error bounded by:
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Set Membership approachSet Membership approach



Structured identificationStructured identification

In the case of large dimension of regressor space it is 
often very hard to obtain satisfactory modeling accuracy.

Structured (block-oriented) identification

The high-dimensional problem is reduced to the 
identification of lower dimensional subsystems and to the 
estimation of their interactions



Structured identificationStructured identification

Not measured

Nonlinear Linear

Typical cases: Wiener, Hammerstein and Lur’e systems



Iterative identification algorithm:
- Initialisation:  get an initial guess M2

(0) of M2

- Step k:
1) Compute v(k) such that M2

(k-1)[v(k)]=y
2) Identify M1

(k) using u and y as inputs, v(k) as output
3) Identify M2

(k) using v(k) = M2
(k)[u,y] as input, y as output 

and return to step 1)

Key feature: 
The identification error is non-increasing for increasing iteration.

Structured identificationStructured identification



Model quality evaluationModel quality evaluation

The usual approach is to look for model validity

Model invalidity only can be surely asserted, when    
the model does not explain the measured data

Even more, infinitely many models                     
exactly explaining the data can be derived

| |t t
My y− >� expected noise size

Infinitely many not-invalidated models can be derived 

“overfitting” danger



Model quality evaluationModel quality evaluation

choose #r of basis functions = #T of measured data
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Model quality evaluationModel quality evaluation

Example: 
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input

output

candidate 
model  
structures



Model quality evaluationModel quality evaluation

Estimation of M1, M2, M3
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Model quality evaluationModel quality evaluation

All models M1, M2, M3 explain exactly the given data y

How to choose among them ?

choose the one with the best “predictive ability”

measured by accuracy
in simulating data not 
used for model estimation

estimation data

y,yM1, yM2, yM3



Model quality evaluationModel quality evaluation

Several indexes have been proposed for estimating 
the predictive ability of models:

ˆ( )T nFPE R
T n

ϑ +
=

−
2ˆln ( ) nAIC R
T

ϑ= +

lnˆln ( ) n TBIC R
T

ϑ= +
They provide quite crude approximations, especially 

for nonlinear systems

A simple but effective approach: splitting of data

• estimation data: estimate candidate models Mi, i=1,..,m
• calibration data: choose the best one among Mi

:T numberof data
:n numberof parametersϑ

( ) [ ] [ ]1R Y L Y L
T

θ ϑ ϑ′= − −
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Model quality evaluationModel quality evaluation

Best model among candidate ones Mi

estimation data

y,yM1, yM2, yM3

calibration data

minimum simulation error on the “calibration” data

Example: M3 is the best one among M1, M2, M3



ApplicationsApplications

Prediction of atmospheric pollution
Simulation of dam crest dynamics
Identification of vehicles with controlled suspensions



Prediction of urban ozone peaks

NOx
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VOC
CH4 NH3
N2O

CO
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fotochimico



Prediction of urban ozone peaks

hCombustion processes and high solar radiation   
cause high tropospheric ozone concentrations
hPrediction of ozone concentrations is important  

for authorities in charge of pollution control and    
prevention
hStudies in the literature show that physical models

are not able to reliably forecast the links between  
precursor emissions (Nox, VOC), methereological   
conditions and ozone concentrations

Sillman “The relation between ozone, Nox and hydrocarbons”,      
Atmos. Environ., 1999

Jenkin-Clemitshaw “Ozone and other photochemical polluttants: 
chemical processes governing their formation”, Atmos. Environ., 1999



Prediction of urban ozone peaks

Value to be
predicted

[O3]

[µg/m3]

day t-1 day t+1

Used measurements

day t

typical data at Broletto (Bs)



Prediction of urban ozone peaks

1
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• Structure of used models:

- : max O3 concentration at day t
- : mean NO2 concentration at 4-8 pm of  day t

- : mean O3 concentration at 4-8 pm of  day t

- : max temperature at day t

- : forecast of max temperature at day t+14
tu

ty
1
tu

2
tu

3
tu



Prediction of urban ozone peaks

• Prediction methods tested:

PERS:

ARCX: periodic ARX

NN: sigmoidal neural net

NF: neuro-fuzzy

NSM: nonlinear set membership

1t ty y+ =

• Hourly data measured at Brescia center:

1995-1998: estimation data set

1999: calibration data set

2000-2001: testing data set



Prediction of urban ozone peaks

Indexes measuring the ability to predict 
concentrations exceeding a given threshold:

 observed 

predicted yes no 
total 

yes a f – a f 

no m - a N + a – m 
– f 

N – f 

total m N - m N 
 

 

fraction of Correct Predictions:  CP=(a/m)%

fraction of False Alarms:  FA=(1-a/f)%

Success index:  SI=[(a/m)+((N+a-m-f)/(N-m))-1]%

European Environmental Agency, Tech. Report 9, 1998 



Prediction of urban ozone peaks

 PERS ARCX NN NF NSM 
CP 65.1 61.9 69.8 63.5 71 

FA 33.9 25 27.9 25.9 27.4 

SI 47.6 51.1 55.7 51.8 51.2 
 

Calibration data set: m=63 exceeded thresholds

 PERS ARCX NN NF NSM 
CP 41.5 35.9 53.8 66.7 71.8 

FA 57.5 51.7 40 44.7 44 

SI 34.4 31.3 49.6 60.2 63.5 
 

 

Testing data set: m=39 exceeded thresholds



Model of Schlegeis Arch Dam

• Model to simulate the crest displacement of 
the dam as function of:

water level

concrete temperature

air temperature

• Difficulties in deriving reliable physical models

• Models tested: ARX, NN, NSM

• Daily data available in period 1992-2000



Model of Schlegeis Arch Dam
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• Structure of used models:

- : crest displacement at day t

- : concrete temperature at day t

- : mean air temperature at day t

ty
1
tu

2
tu

3
tu

- : water level at day t

• Daily data:
1992-1996: estimation data set

1997-1998: calibration data set

1999-2000: testing data set



Model of Schlegeis Arch Dam

ARX model NN modelexperimental data
model

• Simulation results on the testing data set:



Model of Schlegeis Arch Dam

NN model NSM modelexperimental data
model

• Simulation results on the testing data set:



Identification of vehicles 
with controlled suspensions

Virtual design and tuning of 
Continuous Damping Control systems

Derive a model for simulation of
chassis and wheels accelerations as 
function of road profile and damper control    

GOAL:

USE:



Experimental setting
hC-segment prototype vehicle with controlled dampers 

and CDC-Skyhook (Continuous Damping Control system).

hMeasurements are performed on a four-poster
test bench of FIAT-Elasis Research Center.



Experimental setting

Road profiles:

hRandom: random road.
hEnglish Track: road with irregularly spaced holes and bumps.
hShort Back: impulse road.
hMotorway: level road.
hPavé track: road with small amplitude irregularities.
hDrain well: negative impulse road.

Note: The road profiles are symmetric (left=right).



Experimental setting

Data set: 93184 data, collected with a sampling 
frequency of 512 Hz, partitioned as follows:

hEstimation data set: 0-5 seconds of each acquisition. 
hCalibration data set: 5-7 seconds of each acquisition.
hTesting set: 7-14 seconds of each acquisition. 



Structure of vehicles vertical dynamics

Since the road profiles are symmetric, 
a Half-car model has been considered:



Structured Identification of
vehicles vertical dynamics

Structure decomposition: - CE: chassis + engine
- SWT: suspension + 

wheel + tire

Measured variables:
- prf and prr : front and rear

road profiles.    
- isf and isr : control currents of 

front and rear suspensions.    
- acf and acr : front and rear 

chassis vertical accelerations.    

Note: Fcf and Fcr are not measured.



Results on testing set of NSM model
Front wheel acceleration: english track road

measurements, NSM model



Results on testing set of NSM model
Chassis front accelerations: random road

measurements, NSM model



Results on testing set of NSM model
Chassis rear accelerations: random road

measurements, NSM model.



Comparison with physical model

Chassis front accelerations: random road
measurements, NSM model, physical model


